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Abstract
This paper presents a study of a gaze interactive digital assembly instruction that provides concurrent logging of pupil data
in a realistic task setting. The instruction allows hands-free gaze dwells as a substitute for finger clicks, and supports image
rotation as well as image zooming by head movements. A user study in two LEGO toy stores with 72 children showed it
to be immediately usable by 64 of them. Data logging of view-times and pupil dilations was possible for 59 participants.
On average, the children spent half of the time attending to the instruction (S.D. 10.9%). The recorded pupil size showed a
decrease throughout the building process, except when the child had to back-step: a regression was found to be followed by
a pupil dilation. The main contribution of this study is to demonstrate gaze-tracking technology capable of supporting both
robust interaction and concurrent, non-intrusive recording of gaze- and pupil data in-the-wild. Previous research has found
pupil dilation to be associated with changes in task effort. However, other factors like fatigue, head motion, or ambient light
may also have an impact. The final section summarizes our approach to this complexity of real-task pupil data collection
and makes suggestions for how future applications may utilize pupil information.

Keywords Gaze interaction · Instructions · Usage log · Pupil dilation · Pupillometry · Effort · Engagement · Task analysis ·
User experience · User interfaces

Introduction

Gaze-tracking sensors are emerging in consumer-grade PCs
and head-mounted displays. Gaze interaction is convenient,
particularly when the hands are occupied with a primary
task, for instance assembling or cooking (Mardanbegi,
Hansen, & Pederson, 2012); gaze may then be used for
input while handling objects and without contaminating the
display itself.

In addition to the advantages of being hands-free, gaze
interaction provides new opportunities to collect real-time
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user data. How frequently is each element on a display
attended to, and which elements are ignored? Central to
this paper, previous research on pupil dilation has revealed
a relationship between pupil dilation and cognitive effort.
Under laboratory conditions with restrictions on head
motion and under well-controlled light conditions, several
studies have shown that when mental load increases, the
pupils dilate proportional to the increase (e.g., Beatty &
Lucero-Wagoner, 2000; Kahneman & Beatty, 1966) until
the task demands become limited by available resources
(Granholm, Asarnow, Sarkin, & Dykes, 1996). This
provides a unique possibility to identify, e.g., particularly
demanding parts of a task and to quantify changes
throughout task engagement—for both individuals and for
groups of users. However, it is an open question if pupil data
of relevance may be recorded in real-life situations without
control of ambient light and with free head movements.

This paper also addresses some of the challenges for a
widespread exploitation of gaze interaction in ubiquitous
displays: Firstly, gaze sensors should be able to provide
interaction opportunities comparable to those replaced,
for instance finger tap selections, swiping, and pinching
on a touch screen. Secondly, since most people are
not yet familiar with gaze applications, they should be
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Fig. 1 The gaze interactive assembly instruction. Left: Stepping for-
ward by dwelling at the arrowhead. A circle is drawn clockwise around
the arrowhead to indicate how long it should be fixated. Right: The

image gets blurred when the gaze tracker loses contact with the eyes,
which provide immediate feedback to change the head position in front
of the tracker

self-explanatory with regard to their functional properties,
for instance guiding users to position their heads within the
track-box of the sensor. Finally, instant engagement should
not be prevented by lengthy calibrations (Fig. 1).

We designed a digital LEGO construction manual to
address some of these challenges and tested it in two toy
stores. Forward and backward steps are made by gazing at
arrow icons. The views of the LEGO model are controlled
by head movements: leaning forward or backward makes
the model zoom in or out; an interaction principle originally
proposed by Harrison and Dey (2008). Moving the head
sideways makes the model rotate left or right, cf. Fig. 2,
bottom. Both eye and head movements are tracked by the
very same gaze sensor (Mardanbegi et al., 2012).

The designers at LEGO were particularly interested
in knowing more about the users’ engagement during a
building task. This information is very difficult for them
to get without asking questions that would disturb the
child. Measuring EEG, heart rate, or galvanic skin response
requires wiring the children, which does not scale well to
user studies with a high number of participants outside a
lab. They would also like to know if some steps took an
exceptionally long time since this might suggest to split
them. Basic logging of user input provides the designers
some insights, but won’t tell if the time was spent on
interpreting the pictorial instructions or working with the
bricks. So, subsequently we analyzed the view times and
pupil data recorded in the store to explore if changes would
indicate also changes in performance during the building
task.

Our paper has three contributions: We present an
application where gaze provides a hands-free substitution
for click, pitch, and swiping, and although not an entirely
new approach, we suggest that it works well for assembly
tasks like the one studied here and allows for easy
behavioral data collection. We conduct a study to test if
the instructions can be used immediately in a realistic
task context. Finally, we analyze if the gaze data recorded
may provide insights that could possibly be linked to
how much attention sub-parts of the task received or to
individual task events. Although focusing on a LEGO

assembly task, we consider the application generic for a
broad range of step-wise pictorial instructions typically
found at workplaces, educational institutions, and in public
domains. In laboratory work, for instance, a chemist is
often required to follow specific procedures for handling
substances. Gaze interaction with a workbench monitor
would allow the chemist to navigate procedure descriptions
without contaminating the display. At the same time, gaze
tracking would be able to confirm that each instruction had
been carefully studied. Similarly, students may engage with
digital educational resources in a step-wise order, keeping
both hands free for note taking. In this case, pupil data could
indicate which parts of the learning material required the
most mental effort from students.

A gaze-interactive pictorial instruction

Current digital versions of LEGO instructions for tablets1

present each next building step when pressing an arrow-
button in the right corner; going back is done by another
button in the left corner. Zooming in on the model may
be done by finger pitching while rotations may be done
by swiping. We converted these basic functions to a
gaze- and head-activated interface by having the step-
forward/backward command done by dwelling on two
arrow buttons shown on the right and the left sides of
the screen, and the zooming and rotation done via head
movement, s.c.f. Fig. 2, bottom).

The gaze-tracker model used for the experiment had a
limited tracking box of approximately x = 30 cm, y =
20 cm and z = 10 cm at 40 cm distance. Whenever gaze
tracking was lost, which happened every time the child
looked away from the screen, the image of the model would
become slightly blurred. Only by looking at the screen
and keeping the head within the tracking box would the
child be able to regain a clear image. Preliminary tests
with an early prototype had found this feedback to be
effective; we observed that the children quickly learned how

1See for instance https://goo.gl/h4KUMF.

https://goo.gl/h4KUMF
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Fig. 2 Top: Flowchart of the gaze-interactive system showing how
the information obtained from the eye tracker is mapped to different
functions; IPD = inter-pupillary distance. The “head pos estimator”
estimates the horizontal offset of the head vs. the center of the bound-
ing box. Bottom: Interaction with the LEGO construction manual on
a tablet using gaze and head movements. The user looks at the right

arrow button to go to the next step (a), the button gets activated after
dwelling (b), once dwell-time is completed, a moving circle guides the
user’s gaze back towards the digital model where new bricks are high-
lighted in yellow (c). Users can rotate the digital model by moving
their head to the sides (d). Zooming can be done by leaning forward
and backwards (e and f)

to reposition their head within the invisible boundaries of
the sensors view angle whenever their head had been outside
the box. In addition, the intro screen of the manual showed
nothing but a LEGO head symbol and a small rectangle
in the center. The head followed the movements of the
child’s head. The child was asked to place it within the
small rectangle, which would then launch the instruction
application, initially teaching the child where to position the
head in front of the monitor.

The active areas of the dwell buttons are located on either
side of the screen, covering the entire screen height and 20%
of the screen width, each. However, the visible size of the
buttons does not cover the same area; the users see only an
arrow in the middle of each activation areas (Fig. 1). By this
design, users experience a good tracking precision without
requiring high-precision tracking equipment and without a
need to calibrate the gaze tracker for each user. Based on
observations in a pilot study, we decided to set dwell-time
to 600 ms. Previous work on dwell-time gaze interaction
technique has shown that dynamic feedback during the

dwell-time activation can significantly improve the users’
performance and reduce subjective workload (Majaranta,
MacKenzie, Aula, & Räihä, 2006). Thus, we provided two
different kinds of feedback. During the dwell time, a visual
feedback is given by shrinking the arrow and making it
smaller while an animated circle is drawn around the arrow
indicating the dwell time progression (Fig. 1; left). If the
user looks away from the arrow before the dwell-time is
finished, the dwell-time timer and all the animated feedback
will reverse. This gives the system more robustness against
potential noise or inaccuracy in the gaze tracking. Upon
dwell-time completion, there will be a short click sound and
then a small animated circle will move from the dwell button
towards the center of the screen, guiding the user’s gaze
back towards the model again. New bricks added in each
step gets highlighted in yellow.

The user can zoom in and out the view of the digital
model by leaning forward and backwards towards the
screen. Similar ideas has been tested before using a camera
and face tracking, e.g., by Harrison and Dey (2008).
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However, we just use data from the gaze sensor to estimate
the relative distance between the viewer and the screen; no
extra cameras are implied (for more details on how to do
this, see the “Apparatus” section).

Related work

Video-based analysis of manual activities and logging of
input to digital devices are standard methods in usability
studies. Recently, gaze tracking has become more common
because it provides additional information on how much
time each area is looked at, which elements that tends to get
overlooked, and which parts are frequently revisited (Bojko,
2013). Measures and visualizations of gaze movements
are widespread within experimental psychology (Holmqvist
et al., 2011) and eye movement recordings have been used
in numerous research projects on naturalistic tasks (Land &
Tatler, 2009).

Gaze interaction is now common practice within assistive
technology (Majaranta et al., 2011), and a substantial
amount of HCI research has explored the potentials of this
modality, e.g., Sibert and Jacob (2000) and Zhai (2003).
Standard input methods are dwell-time activation, (i.e.,
looking at a target for a set time, for instance 500 ms, e.g.,
Ware & Mikaelian, 1987); stroke activation (i.e., looking
in one or several directions, in a consecutive order, with a
saccade in between, e.g., Drewes & Schmidt, 2007); and
pursuit activation (i.e., following a smoothly moving target
area, e.g., Vidal, Bulling, & Gellersen, 2013). Current gaze-
interaction research focuses on challenges and potentials
in smart-phone interaction (e.g., Rozado, Moreno, Agustin,
Rodriguez, & Varona, 2015), smart-watches (e.g., Hansen
et al., 2016), ubiquitous displays (e.g., Velloso, Wirth,
Weichel, Esteves, & Gellersen, 2016) and head-mounted
displays (e.g., Itoh & Klinker, 2014).

The pupil dilates when people increase effort. Measuring
changes in effort during a task or differences in task loads
between design alternatives may thus provide insights to
developers of, e.g., learning tools and applications. Pupil
data can be recorded with modern gaze-tracking technology
used for gaze interaction. A majority of previous research
on pupil dilations has been conducted with experimental or
simulated tasks in a lab using either a chin rest or a head-
mounted eye-camera (cf. Klingner, Kumar, & Hanrahan,
2008). There are good reasons for this limitation, as pupil
changes caused by changes in scene brightness may equal or
exceed those resulting from changes in effort. For instance,
Ahern and Beatty (1979) reported task-evoked pupillary
response (TEPR) dilations and the darkness response both
to be on the order of 0.5 mm, compared to a light reflex
induced contraction of 1.5 mm. The TEPR is consistent with
previous works of Kahneman and Beatty (1966), and also

the works of Klingner et al. (2008). Orlosky et al. (2017)
reports load-induced pupil dilations of approximately
10%.

Furthermore, it has been shown by Bradley, Miccoli,
Escrig, and Lang that pupil size is modulated by activation
of the (sympathetic) nervous system when viewing affective
pictures (Bradley, Miccoli, Escrig, and Lang, 2008). There
is a growing body of evidence that the pupil size is related
to neural activity in the locus coeruleus (Eckstein, Guerra-
Carrillo, Singley, & Bunge, 2017; Gilzenrat, Nieuwenhuis,
Jepma, & Cohen, 2010; Joshi, Li, Kalwani, & Gold, 2016;
Murphy, O’Connell, O’Sullivan, Robertson, & Balsters,
2014), which is linked to arousal and attentional processes
(Aston-Jones, Rajkowski, & Cohen, 1999) and utility
optimization and the dichotomy between exploration and
exploitation (Aston-Jones & Cohen, 2005). Thus, the pupil
size is influenced by complex emotional and cognitive
processes, not all of which we can control in the present
experimental setup.

Finally, in visual tasks, the pupils are constantly moving
with the eyes and the eye region moves with the head. So
it is still an open question if tracking of pupil dilations
is feasible outside a lab where changes in ambient light
are unknown and where users are free to move their head
as the task requires. To our knowledge, the present work
is the first to combine gaze interaction with pupil data
logging in a naturalistic task setting involving inexperienced
users.

User study

Shops and shopping malls are attractive locations for user
studies aiming at a high number of observations because
they offer participants who can be recruited easily. In-store
testing has a number of challenges, though: available space
may be limited, lighting conditions may not be controlled,
and participants may be distracted by noise and other
shoppers coming by. We addressed these challenges by
designing a simple interface, for an experiment that would
last less than 20 min, and by having adult assistants guarding
each participants at all time.

Participants

A total of 72 participants were recruited among children
accompanied by an adult in two LEGO stores, located in
Germany and Denmark. All of the children were between
6 and 12 years, regular users of mobile phones and/or
tablets, and all of them were familiar with LEGO model
construction. None of them were wearing glasses or contact
lenses. Consent was obtained from the accompanying adult
to record data and video.
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Apparatus

We used two Microsoft Surface Pro tablets with Windows 8,
which executed the instruction application, conducted gaze
tracking, and logged use data. A 30-Hz low-cost (100 US$)
binocular gaze tracker from The Eye Tribe was used for
the experiment. It recorded binocular gaze data when the
participants were looking at the tablet, through a USB 3.0
with a claimed accuracy of 0.5 to 1.0 degree of visual angle
for the gaze point. Additionally, a linear pupil size estimate
is returned by the tracker in arbitrary units, with no specified
accuracy. The algorithm behind this estimate is proprietary,
but publicly proposed (Lin, Pan, Wei, & Yu, 2010) methods
involve fitting an elliptical shape to the outline of the
pupil, correcting for the angle of view and returning the
estimated radius or diameter of the pupil, which would
allow the estimate to obtain subpixel resolution. This is also
the method suggested by Klingner et al. (2008). We have
no reason to believe the Eye Tribe tracker will do worse
than publicly available algorithms. At viewing distances
between 10 and 40 cm, a typical pupil size that varies
between 2 and 5 mm will have a viewing angle between 0.29
and 2.9 degree seen from the tracker. Assuming a native
resolution of 1 min of viewing angle2, this corresponds
to a range between 18 and 175 pixels, with a typical
3.5 mm pupil at 35 cm distance recording at approximately
34 pixels.

The Eye Tribe tracker has been compared against other
trackers with respect to gaze points (Dalmaijer, 2014;
Ooms, Dupont, Lapon, & Popelka, 2015)and pupil size
estimates (Dalmaijer, 2014), and has previously been used
to assess load (Čegovnik, Stojmenova, Jakus, & Sodnik,
2018). For the later, no quantifiable accuracy was derived,
but it was qualitatively demonstrated to produce similar
results to an EyeLink 1000 in controlled conditions,
concluding that “the spatial precision and accuracy are good
enough for fixation checking, point-of-regard analyses,
and pupillometry” (Dalmaijer, 2014) for the Eye Tribe
tracker.

The assembly model was a LEGO Mini VW T1 Camper
Van (Model # 40079), featuring 76 pieces and targeted at
children 6 years and above. The original paper manual for
this model had divided the instruction into 18 pictures. We

2In an experiment performed by the authors, the IR camera used by the
tracker reports a maximum resolution of 2304 × 1136 pixels at 27 Hz
when queried through the USB port using SmartGaze (Hume, 2016).
The bounding box inside which the pupils are correctly detected at
a distance of approximately 36 cm from the tracker is 25 cm wide,
which is equivalent to a viewing angle of 38 degrees seen from the
tracker. This would indicate that the native resolution of the camera
corresponds to an approximate angle of view of 0.017 degrees (or 1.0
arcminute) or equivalently 60 pixels/degree.

could reproduce them digitally by use of a 3D model and
in addition the model would allow users to zoom and rotate
every image. The original paper manual consists of 18 steps
with three of the steps broken further down into sub-steps.
Our digital version showed all of the steps one-by-one,
ending up with a total of 27 views. For zooming, we use
inter-pupillary distance (IPD) as a heuristic to approximate
the distance between a user’s head and the screen. The
IPD is calculated as the Euclidean distance between the
estimated center positions of the pupil, which are returned
by the eye tracking as coordinate sets (x, y) ∈ [0..1]2 inside
an imagined bounding box. We only zoom if the absolute
difference of the current to the last stable IPD is equal to
or larger than ε = 0.01 and some zoom factor D = 11.
The function fzoom(d) = (d · D)2 gives the distance from
the 3D model to the camera for a stable IPD d. The last
IPD for which zooming occurred is now regarded as the
last stable IPD. Using a last stable IPD prevents jitter. We
linearly interpolate between camera distances over 200 ms.
Zooming is absolute.

We use the relative position of the user’s head vs. the
center of the screen to initiate a continuous relative rotation
of the 3D model.3 Head coordinates are computed as the
center point between both pupil centers. If the user’s head
is more than 1/3 left or right of the center of the tracking
bounding box, a continuous rotation of the 3D model in
the opposite direction starts. We use the distance of the
head to the closest point on the bounding box to determine
rotation speed, where a larger distance results in a faster
rotation. The rotation speed is given in degrees by fδ(x) =
sgn(x) · x2 · S, where x is the distance between the x value
of the head coordinates and the x value of the closest point
on the bounding box; sgn is the sign function; and S some
configurable rotation speed factor, in our setup S = 10−5.
The value of fδ is added to the current camera angle at
screen-refresh rate. The bounding box was positioned at
tracking image center with a width of 300 pixels.

Procedure

The child was seated comfortably at a table in front of one
of two tablets, which was positioned approximately 40 cm
away and 20 cm above the table by use of a bendable tablet
holder; see Fig. 3. The session started by asking the child
to position a LEGO figure head on the screen inside a box
by moving his or her own head. This would start a short
1-min interactive training session where the child would
forward and reverse a three-step instruction and try out
zooming and rotation. After this introduction, the study was
started by launching the full instruction and pulling the 76
LEGO pieces out on the table. The children conducted the

3Rotating or tilting the head itself is not meant to initiate any action.
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Fig. 3 Two children using the gaze-interactive building instruction in
a toy store with an adult assistant next to them

building process by themselves and only got adult assistance
if they were unable to continue on their own. After the
experiment, all participants were given a small LEGO box
as appreciation for their participation. In total, the session
lasted between 15 and 20 min.

Design and analysis

The study was performed as an observational study with all
of the participants having one single exposure to the same
condition.

During each session, all data from the eye tracker as well
as all user-initiated navigation and zooming actions were
recorded for subsequent analysis. From this recorded data,
we derived the following measures for our study: task time
for each building step (i.e., the cumulative time displaying
instructions belonging to each step); view time per step
(i.e., the cumulative time where gaze positions are recorded,
indicating eyes on the tablet, within that step), play time
per step (i.e., task time subtracted view time), number of
regressions (i.e., how many times did the child go back to a
previously visited step) and what fraction of the view time
was spent during regressions vs. the total view time, for each
step. Zoom and rotations were also counted.

Eight participants were removed from the analysis
because they did not complete the building process. This
was due to problems with gaze tracking, mostly because
the children did not understand to re-position their head
correctly in front of the tracker. Of the remaining 64, five
had an uneven distribution of recorded pupil data with more
than 75% in either the first or second half of the session, and
were also removed from the analysis.

The pupil size estimate from the eye tracker varies
between the values 17.0 and 67.1 (the lowest 5% percentile
and the highest 95% percentile across all participants) with
an overall median value of 32.5. With an assumed pixel-
resolution of 1 arcminute, the median value corresponds to
a pupil diameter of 3.3 mm at a distance of 35 cm. At the
same distance, the lowest value corresponds to 1.7 mm and

the highest to 6.8 mm (although at a distance of 10 cm the
highest value would correspond to only 2.0 mm).

Before use, the pupil size estimates from the participants
were filtered as follows: First, samples where data are only
available for one eye are discarded. Then, in an effort
to remove outliers, a Hampel filter (with a radius of 13
samples at 30 Hz, and nsigma of 3) was applied, and in
the process any outliers that have up to 13 neighbors within
the window are replaced; this also interpolates blink periods
up to 400 ms with the median value of a rolling window
over the surrounding pupil size estimates. The linear pupil
size estimate is hereafter compensated for changes in the
calculated IPD, and any samples where the IPD is less
than 50% of the median value over the session are further
removed. The average Pearson correlation coefficient R
between left and right eye is hereafter 0.83; this indicates
that the variations of the (independently estimated) left/right
eye pupil sizes are strongly correlated, and rather than
being artifacts of the measurement may point towards a
common causal factor. Finally, the pupil size estimates are
converted to a relative baseline, the median value across
the experiment for each participant.4 In the absence of an
absolute, linear (metric) pupil size estimate, this is done
in order to calculate aggregate values in a comparable
way across participants, resulting in a metric similar to
the “percent in change pupil size” originally proposed by
Hess (1972). Further, when comparing pupil size estimates
between (sets of) tasks, we use an average PCPS (APCPS)
across the periods where the participant is engaged in the
selected tasks, similar to Iqbal, Zheng, and Bailey (2004),
Iqbal, Adamczyk, Zheng, and Bailey (2005), and Bailey and
Iqbal (2008).

Results

A large majority, namely 64 of the 72 participants (i.e.,
88%), managed to complete the model, and we were able
to get a full gaze data set from 59 participants. On average,
the 59 children spent 14 min and 20 s (S.D. 6 min and
33 s) on the task. They made 5.6 regressions (S.D. =
5.6) and conducted 176 zoom- and 67 rotation- actions in
average (S.D. 161 and 44 respectively), all indicative of
the differences between individual children. It is, however,
not possible to tell if the zoom and rotations were done on
purpose or just happened as an effect of the child moving.
Hence, we do not investigate any correlation between zoom
and rotations and other factors.

4Note that we avoid using a z-score normalization, as we cannot, and
need not, make any assumptions as to whether the individual pupil size
variations are equal across all participants.
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Fig. 4 Average time spent within each building step (x-axis) with
the stacked bars showing the proportion of the time spent either
manipulating bricks (light blue) or when the gaze point was at the
tablet showing the Instruction Manual (y-axis); the later measure is
divided into first-visits (gray) and regressions (yellow). In most steps,
between 40 and 60% of the time is spent studying the instruction
manual, with an average of 49.4%

View times

The width of each column in Fig. 4 shows the mean duration
of each individual step. The step division corresponds to
the one used in the paper manual; in our digital version,
there were two views for step seven, three for step 10, and
four for step 17. The bars shows the distribution of time
within each step: The light blue bar shows the proportion
of time spent manipulating LEGO bricks (“play time”), the
gray bars show the time spent looking at the instructions
in the first visit, and the colored bars show the time spent
in a regression: a subsequent visit to the step once a
later step had commenced. The total time spent looking at
instructions, the “view time”, was on average 49.4% (S.D.:
10.9%), i.e., roughly half of the time was spent studying
the instruction manual. However, some of the children spent
a lot of time looking at the tablet while assembling the
model; the most extreme case would look at it 78% of the
time. Others looked at the tablet more rarely; one of the
participants only viewed it 27% of the time.

Figure 5 shows the progress of the building process
relative to the accumulated time: instruction view time
(green dashed line) and brick play time (red solid line).
Note that the progress is remarkably linear, for both,
indicating a steady pace through the construction. The
Pearson correlation between view and play time was R =
−0.837, p < 0.001. Our analysis does not, however, intend
to address the correlation between the design and the time
spent executing the building process any further.

Pupil dilations

Figure 6 shows the average percent change in pupil size
(APCPS) relative to the baseline, at each step, across all

Fig. 5 Progress (in relative time) to completion of each step, shown
as the view time (green dashed line) and playing time (red solid line).
The shaded area behind each line indicates the standard error of the
mean, and the dotted lines indicate the sample standard deviation

participants. The baseline for each participant is the overall
median value of the pupil size estimate. The yellow graph
depicts the uncorrected pupil size with the standard error
of the mean shaded. The blue graph shows the same
data after attempting to compensate for luminance: This
was done by calculating the average screen luminance
for each step from the image being shown (in relative
units) as an approximation of the displayed luminance, and
then regressing the pupil size against this approximated
luminance, using a conventional linear regression model.
The residual variance can then be taken as a representation
of the luminance compensated pupil size, building on the
premise that the pupil size can be modeled as the addition
of two components, one caused by luminance and the
other by other (subjective) factors, as demonstrated by
Pfleging, Fekety, Schmidt, and Kun (2016). This does not
account for the response time of the pupillary light reflex
(Beatty & Lucero-Wagoner, 2000), and is thus only a
coarse approximation. Both graphs show an initial increased

Fig. 6 Mean pupil size across all participants relative to their
individual baseline, at each building step (uncorrected (yellow dashed
line) and after luminance correction (blue). The shaded area behind
each line indicates the standard error of the mean, and the dotted lines
indicate the sample standard deviation
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pupil size and an overall declining trend. The effect of
the luminance is mainly visible towards the end, where an
increasing number of white bricks in the model made the
screen brighter; however both graphs have similar declining
trends. Note that as the eye tracker is only able to record data
when the participant is looking directly at the screen and
with the head inside the bounding box, no data is available
when the participant looks at the bricks on the table; in our
terminology, we only have pupil data for the view time and
not for the play time.

Following the analysis method by Hyönä, Tommola,
and Alaja (1995), we divided the tasks into three phases:
beginning (steps 1 to 6), middle (steps 7 to 12), and end
(steps 13 to 17), in order to compare the task-internal
variation in pupil size. The mean APCPS values were 1.74,
0.02, and − 1.43% with a standard error of the mean of
0.27, 0.20, and 0.18, respectively. There was a significant
effect, as evidenced by a non-parametric Kruskal–Wallis
test H = 77.7 and p < 0.000001, and a subsequent post
hoc analysis yielded pairwise Wilcoxon comparisons at the
p < 0.00001 values between any of the three divisions.

Inspired by the work of Bailey and Iqbal (2008), we
looked further into the changes in pupil size when people
advanced and regressed between steps. Figure 7 shows
the difference in APCPS calculated as the average value
over the time spent in first visit vs. the average value
over the time spent in any subsequent regressions to the
same step. On average pr. step, the participants spent
25.0 s viewing the instructions, and all valid gaze data,
grouped accordingly into first and subsequent visits for
each step, has been included in the APCPS metrics. Apart
from the initial phase comprised of steps 1 to 3, there
is a difference of APCPS when comparing first visit to
regressions (subsequent visits), at the confidence levels
indicated in Fig. 7 (p < 0.05 in blue and p < 0.01 in green).
With the exception of steps 6, 12, 15, and 17, the difference
is statistically significant and is approximately 3%.

Fig. 7 Pupil size difference between first visit and regressions at each
step (red), with standard error of the mean indicated as a shade.
Confidence levels that the values are different (at 5 and 1%) also
indicated (blue and green, respectively)

Discussion

The concept of gaze-interactive instructions, which addi-
tionally allows for collecting gaze and pupil data for subse-
quent analysis, was effective for the children, as evidenced
by their successful use of the navigational features. The two
main questions raised by LEGO designers, namely if there
are indications of changes in engagement and if some steps
stands out as more difficult, can be answered partially.

Measures of average time per task step and time spent
looking at instructions (view time) were easy to collect
and are not confounded by luminance variations or head
movements. In our case, these metrics showed signs of a
well-designed instruction manual with no individual steps
standing out. The gains of collecting view time in addition
to a standard log of button activations were, however, not
obvious for this model, since view time and step time
correlated well.

By tracking pupil size and compensating for head
movements, we were able to document (A) an overall
decreasing trend throughout the building task, indicated
by a significant drop in the APCPS, and (B) a significant
difference of most regressions compared to first visit to each
step. With the generally accepted link between changes in
pupil size and changes in effort, our results may suggest
that (1) a higher effort is required initially (what Hyona
refers to as the familiarity effect (Hyönä et al., 1995)),
and (2) regressions, indicative of task problems, require
additional effort, implied by significant increases in pupil
size for regressions made at 11 out of 17 steps. Note
that we have not used the trend observed in (A) to de-
trend (Strauch, Georgi, Huckauf, & Ehlers, 2015) the
APCPS before performing step (B), but have chosen to
report the two results independently of each other; if we
had done so the differences would have been (slightly)
larger, since regressions by definition appear later than first
visits.

However, it cannot, on the basis of this study alone,
be concluded that the changes are caused solely by
differences in effort; factors like increasing fatigue, changes
in motivation or engagement, frustration, or other emotional
factors could also possibly impact the results. From this
perspective, the pupil size differences between regressions
and first visits to a building step are more intriguing, and
may more strongly suggest that cognitive or emotional
factors as the underlying cause. It is, however, not possible
to say whether the regressions made the pupil dilate because
they made the children frustrated or the children exerted
themselves—maybe even both. With a broad analogy, pupil
changes may be like a gauge showing how fast a vehicle
is running, but we do not know whether it’s because the
vehicle is going downhill or because the accelerator is
activated. In any case, knowing that a specific type of
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event (i.e., a regression) consistently correlate with changes
in the observable pupil size suggest it is relevant to keep
track of that particular type of event. Further research
could potentially identify other types of events, such as
prearranged surprises or rewards, that may have similar
effects on pupil dilation. Eventually, applications could
dynamically monitor the flow of such events that have
shown a correlation to pupil size changes, avoiding, for
instance, giving rewards just after a surprise, or suggesting
to take a break after a period with unusually high pupil
dilations. It is an open research question if this micro-
management of events on the basis of pupil size measures
would create a better overall user experience or improve
efficiency.

A decrease in arousal caused by fatigue, or getting used
to the task and the environment leading to habituation, may
also play a role behind the observed decrease in pupil size
throughout the building session, even though the children
did not show other signs of being tired out, and were eager
to finish the session, even those who could had difficulties
using the application. Although we cannot at present
point to the key causal factors, our analysis nevertheless
showed a significant difference between the start, the
middle, and the final part, while Hyönä et al. (1995)
only found a significant decrease between the first and
the middle division, not the last two. This suggests future
studies to investigate if changes in dilation are different
for different tasks across the full task and between task
divisions, and additional experimental methods to identify
and isolate the independent factors affecting the pupil size
estimates.

Measuring pupil dilations in-the-wild is especially
warned against because the impact of luminance changes
are considered larger than the effects of task related
changes. In the current study, we made the recordings
in shop areas with homogeneous ambient light. Our
observations suggest that in some situations similar to ours,
where the luminance of the objects being viewed (here: the
tablet display) can easily be determined, they could also
to some degree be compensated for by standard regression
methods.

We were not able to estimate or correct for all types
of head pose changes based on the inter-pupillary distance
alone, which could therefore be an additional confounding
factor.5 Hence, it is advisable to use eye trackers for future

5For instance, rotating the head would also show as a reduced inter-
pupillary distance, however it would also make one pupil appear
slightly large and the other slight smaller, which would not be entirely
consistent with the high positive Pearson correlation coefficient R
found between left and right eye pupil sizes

studies that have robust head-movement/pose estimation
(Al-Rahayfeh & Faezipour, 2013) for applications such as
the one suggested here.

Future research should investigate if view time, regres-
sions and pupil measures would correlate with other bio-
metric measures, such as blink rate, heart rate variability,
EEG, or galvanic skin response. If so, this would be a strong
argument for including pupil dilation metrics as first choice
because they are non-invasive, continuous, and have low
latency (Bailey & Iqbal, 2008).

Pupil metrics are particularly prospective if on-line gaze
interactive building instructions are provided for augmented
reality glasses, since the metrics could then be collected in
continuous large-scale studies, and changes in illumination
compensated for by analyzing the image data from the
build-in image sensor of the augmented reality glasses. In
the future, pupil metrics may even be used to ensure every
builder being rightly challenging by offering an instruction
dynamically adapting to the level of effort shown by the
individual builder.

We used a well-designed instruction manual on a
small-scale model that has been on the market for many
years. However, the results seem to suggest that the
concept could also be used for, e.g., early testing of new
models, for A/B testing different versions, or verifying
against specific segments (age, gender, nationality, previous
building experience, etc.). It may also be of some use
comparing metrics between different models. Finally, by
introducing steps that are deliberately designed to be
difficult, for instance with many bricks added at once, the
impact on effort, view time and regressions could be further
examined.

Conclusions

Using a low-cost 30-Hz gaze tracker in an unconstrained,
real-task setting, we have provided successful gaze and head
interaction for a large majority of the participants trying
it. Concurrently, view time and pupil dilation metrics can
be recorded, and we suggest this could potentially provide
pupil data reflecting changes in cognitive or emotional states
and effort, both across the task and evoked by regressions
between tasks steps, when confounding factors to some
degree can be accounted for or averaged out over many
participants.
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